Integer Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers

نویسندگان

  • Bahar Demirtürk
  • Refik Keskin
چکیده

We study the problem of finding all integer solutions of the Diophantine equations x2 − 5Fnxy − 5 (−1) y2 = ±Ln, x2 − Lnxy + (−1) y2 = ±5F 2 n , and x2 − Lnxy + (−1) y2 = ±F 2 n . Using these equations, we also explore all integer solutions of some other Diophantine equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$

In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.

متن کامل

A 26 Integers 16 ( 2016 ) on Generalized Fibonacci and Lucas Numbers of the Form

Let P be an odd integer, (Un) and (Vn) denote generalized Fibonacci and Lucas sequences defined by U0 = 0, U1 = 1, and Un+1 = PUn +Un 1, V0 = 2, V1 = P, and Vn+1 = PVn + Vn 1 for n 1. In this paper, we solve the equations Un = kx2 ± 1 under some conditions on n. Moreover, we determine all indices n such that the equations Vn = wkx2 ± 1, where w 2 {1, 2, 3, 6} , k|P with k > 1, have solutions.

متن کامل

INFINITELY MANY POSITIVE INTEGER SOLUTIONS OF THE QUADRATIC DIOPHANTINE EQUATIONS x 2 − 8 B

In this study, we consider the quadratic Diophantine equations given in the title and determine when these equations have positive integer solutions. Moreover, we find all positive integer solutions of them in terms of Balancing numbers Bn, Pell and Pell-Lucas numbers, and the terms of the sequence {vn} , where {vn} is defined by v0 = 2, v1 = 6, and vn+1 = 6vn − vn−1 for n ≥ 1.

متن کامل

On the spacings between C-nomial coefficients

Let (Cn)n≥0 be the Lucas sequence Cn+2 = aCn+1 +bCn for all n ≥ 0, where C0 = 0 and C1 = 1. For 1 ≤ k ≤ m− 1 let [ m k ] C = CmCm−1 · · ·Cm−k+1 C1 · · ·Ck be the corresponding C-nomial coefficient. When Cn = Fn is the Fibonacci sequence (the numbers [ m k ] F are called Fibonomials), or Cn = (qn − 1)/(q − 1), where q > 1 is an integer (the numbers [ m k ] q are called q-binomial, or Gaussian co...

متن کامل

Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers

This is the first in a series of papers whereby we combine the classical approach to exponential Diophantine equations (linear forms in logarithms, Thue equations, etc.) with a modular approach based on some of the ideas of the proof of Fermat’s Last Theorem. In this paper we give new improved bounds for linear forms in three logarithms. We also apply a combination of classical techniques with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009